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Abstract
BACKGROUND: The primary criteria for diagnosing mild 
cognitive impairment (MCI) due to Alzheimer ’s Disease 
(AD) or probable mild AD dementia rely partly on cognitive 
assessments and the presence of amyloid plaques. Although 
these criteria exhibit high sensitivity in predicting AD among 
cognitively impaired patients, their specificity remains limited. 
Notably, up to 25% of non-demented patients with amyloid 
plaques may be misdiagnosed with MCI due to AD, when in 
fact they suffer from a different brain disorder. The introduction 
of anti-amyloid antibodies complicates this scenario. Physicians 
must prioritize which amyloid-positive MCI patients receive 
these treatments, as not all are suitable candidates. Specifically, 
those with non-AD amyloid pathologies are not primary 
targets for amyloid-modifying therapies. Consequently, there 
is an escalating medical necessity for highly specific blood 
biomarkers that can accurately detect pre-dementia AD, thus 
optimizing amyloid antibody prescription.
OBJECTIVES: The objective of this study was to evaluate a 
predictive model based on peripheral biomarkers to identify 
MCI and mild dementia patients who will develop AD 
dementia symptoms in cognitively impaired population with 
high specificity.
DESIGN: Peripheral biomarkers were identified in a gene 
transfer-based animal model of AD and then validated during a 
retrospective multi-center clinical study.
SETTING: Participants from 7 retrospective cohorts (US, EU and 
Australia).  
PARTICIPANTS: This study followed 345 cognitively impaired 
individuals over up to 13 years, including 193 with MCI and 152 
with mild dementia, starting from their initial visits. The final 
diagnoses, established during their last assessments, classified 
249 participants as AD patients and 96 as having non-AD 
brain disorders, based on the specific diagnostic criteria for 
each disorder subtype. Amyloid status, assessed at baseline, 
was available for 82.9% of the participants, with 61.9% testing 
positive for amyloid. Both amyloid-positive and negative 
individuals were represented in each clinical group. Some of 
the AD patients had co-morbidities such as metabolic disorders, 
chronic diseases, or cardiovascular pathologies.
MEASUREMENTS: We developed targeted mass spectrometry 
assays for 81 blood-based biomarkers, encompassing 45 proteins 
and 36 metabolites previously identified in AAV-AD rats.
METHODS: We analyzed blood samples from study 

participants for the 81 biomarkers. The B-HEALED test, a 
machine learning-based diagnostic tool, was developed to 
differentiate AD patients, including 123 with Prodromal AD 
and 126 with mild AD dementia, from 96 individuals with non-
AD brain disorders. The model was trained using 70% of the 
data, selecting relevant biomarkers, calibrating the algorithm, 
and establishing cutoff values. The remaining 30% served as 
an external test dataset for blind validation of the predictive 
accuracy.
RESULTS: Integrating a combination of 19 blood biomarkers 
and participant age, the B-HEALED model successfully 
distinguished participants that will develop AD dementia 
symptoms (82 with Prodromal AD and 83 with AD dementia) 
from non-AD subjects (71 individuals) with a specificity of 
93.0% and sensitivity of 65.4% (AUROC=81.9%, p<0.001) during 
internal validation. When the amyloid status (derived from 
CSF or PET scans) and the B-HEALED model were applied in 
association, with individuals being categorized as AD if they 
tested positive in both tests, we achieved 100% specificity and 
52.8% sensitivity. This performance was consistent in blind 
external validation, underscoring the model’s reliability on 
independent datasets.
CONCLUSIONS: The B-HEALED test, utilizing multiomics 
blood-based biomarkers, demonstrates high predictive 
specificity in identifying AD patients within the cognitively 
impaired population, minimizing false positives. When used 
alongside amyloid screening, it effectively identifies a nearly 
pure prodromal AD cohort. These results bear significant 
implications for refining clinical trial inclusion criteria, 
facilitating drug development and validation, and accurately 
identifying patients who will benefit the most from disease-
modifying AD treatments.

Key words: Blood-based biomarkers, Alzheimer’s predementia, animal 
model, machine learning, mass spectrometry.

Introduction

Alzheimer’s Disease (AD) diagnosis is based on 
a cognitive impairment evaluation alongside 
a brain amyloid deposits estimation through 

measurements of Aβ42/40 peptides and/or p-tau protein 
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in cerebrospinal fluid (CSF) or by positron emission 
tomography (PET) imaging (1). These criteria introduce 
the biological diagnostic framework encompassing 
probable AD dementia (2) and Mild Cognitive 
Impairment (MCI) due to AD (3). However, amyloid 
deposition is common in cognitively impaired patients 
suffering from a brain disorder excluding AD (Non-AD 
BD) (4-7).    

When used to identify patients that will develop AD 
dementia symptoms within the MCI population, tests 
relying on amyloid deposition exhibit high sensitivity 
(67-86%) but low specificity (47-72%), resulting in false 
positive rate of up to 30%: these individuals identified 
as AD actually have a non-AD BD (4-7) (Supplementary 
fig.1). Blood tests currently under development have 
shown promising results for the non-invasive brain 
amyloid deposits prediction (8). The plasmatic Aβ42/40 
ratio and p-tau assays have achieved areas under the 
receiver operating characteristic curve (AUROC) of up 
to 87% and up to 95% respectively in predicting brain 
amyloid plaques (9, 10). These assays correlate strongly 
with PET imaging and CSF measurements. However, 
they share similar specificity limitations in predicting 
the development of AD dementia symptoms. Deep 
investigations into plasma p-tau 217 demonstrated its 
efficacy in differentiating amyloid-positive AD dementia 
patients from amyloid-negative non-AD BD patients, 
with a sensitivity of 93% and specificity of 89% (11). But 
this assay’s specificity drops to 47% in distinguishing 
amyloid-positive AD dementia patients from amyloid-
positive non-AD BD patients (11). Recently, plasma 
MTBR-Tau243 has been identified as a potential indicator 
of both amyloid and Tau PET status, along with MMSE 
scores at the time of blood draw (12). Nonetheless, the 
capability of MTBR-Tau243 to predict the onset of AD 
dementia symptoms remains unexplored. The concurrent 
prediction of amyloid plaques and tangles by plasma tau 
biomarkers suggests that these two mechanisms are not 
independent, and that once amyloidosis is established, 
tangle formation appears to be systematic independently 
of the patient pathology. Notably, the co-presence of 
amyloid and tau biomarkers ((A+T+) CSF profile) is 
prevalent in non-AD brain disorders. For instance, 29% of 
Parkinson’s Disease (PD) patients and 40% of those with 
Lewy Body Dementia (LBD) exhibit this CSF profile (13). 
Among LBD patients, 21% test tau-positive on PET scans, 
with 75% also showing amyloid positivity (14). Moreover, 
amyloid and tau brain lesions are commonly found 
in elderly individuals without cognitive impairment 
(15). These observations suggest that blood-based tau 
biomarkers, such as plasma p-tau 217 and MTBR-Tau243, 
are more indicative of amyloid and tau status than being 
distinct predictors of AD dementia symptoms.

Anti-amyloid treatments, such as lecanemab and 
donanemab, are coming to market and will soon have 
to be prescribed by neurologists. However, current 
projections show that treating all patients who meet 

the FDA-recommended criteria, those exhibiting mild 
cognitive impairment or mild dementia alongside 
amyloid positivity, will not be feasible due to complex 
logistics and high treatment costs (16). Projected 
utilization of Lecanemab (Leqembi®) is estimated at 2.5 
million patients by 2030 (https://www.reuters.com/
business/healthcare-pharmaceuticals/us-fda-approves-
eisai-biogens-alzheimers-drug-2023-01-06/), a figure 
roughly equivalent to the number of AD cases in France 
(17). This necessitates a strategic approach by clinicians 
in identifying patients who are most likely to benefit 
from this therapy. The challenge lies in discerning the 
optimal candidates for treatment, particularly in light 
of the significant side effects associated with anti-
amyloid antibodies. Clinicians might be inclined to delay 
prescription until overt symptoms of cognitive decline 
specific to AD are evident, using these symptoms as a 
trigger for initiating treatment. However, this cautious 
approach carries the risk of patients’ conditions 
advancing beyond the stage where they would be eligible 
for effective treatment.

Current data reveals that 29% of non-AD BD patients 
exhibit amyloid positivity (5). These amyloid-positive 
MCI patients, who will develop non-AD BD symptoms 
not attributable to amyloid accumulation (18-24), do not 
appear to be prime candidates for amyloid-modifying 
therapy. Consequently, there is an urgent need to 
develop novel blood biomarkers capable of rapidly and 
accurately identifying amyloid-positive patients at high 
risk of developing AD dementia symptoms. This specific 
subpopulation should be the focus for prioritizing anti-
amyloid treatments, considering the optimal balance 
between clinical efficacy and potential side effects.

We report a novel discovery method leveraging the 
AAV-AD rat, a gene transfer-based animal model (25), 
to pre-identify blood AD pre-dementia biomarkers. 
Our approach unveiled alterations in peripheral blood 
metabolism that accurately segregate patients that will 
develop AD dementia symptoms among cognitively 
impaired individuals. The developed B-HEALEDTM 

test demonstrates a specificity of 93% in this regard. 
Notably, the combination of a positive amyloid status 
and a positive B-HEALED test result yields a remarkable 
100% specificity in predicting the onset of AD dementia 
symptoms among the cognitively impaired patients. 
Interestingly, these peripheral metabolism changes 
involve biological pathways similar to those described 
at the cerebral level in AD. Our findings indicate the 
potential of peripheral metabolism markers to predict 
AD symptom onset with high specificity, up to 13 years 
prior to the manifestation of dementia. These insights 
have profound implications for enhancing clinical trial 
participant selection, streamlining drug development and 
validation, and effectively identifying patients most likely 
to benefit from disease-modifying AD therapies (26).
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Methods 

AAV-AD rat model induction

The animal model was induced in 8-week-old 
male rats through a gene transfer approach following 
a methodology previously described (25) .  All 
experiments were conducted in accordance with the 
ethical standards of French and European regulations 
(European Communities Council Directive 2010/63/EU, 
authorization number APAFIS#4449-2016031012491697).

Rat plasma collection 

Plasma samples from the groups of animals (25, 27, 
28), were collected, quickly frozen and stored at -80°C 
until mass spectrometry (MS) analysis. Specifically, whole 
blood was obtained through intra-cardiac puncture from 
anesthetized, non-fasting rats, using K2 EDTA-coated 
tubes. These tubes were then maintained on ice for 30 
minutes to 3 hours before undergoing centrifugation at 
1500g for 10 minutes at 4°C. Subsequently, the plasma 
supernatant was divided into three aliquots for distinct 
MS analyses: proteomic, metabolomic, and lipidomic. 
Each aliquot was promptly frozen in liquid nitrogen 
and preserved at -80°C. The duration between plasma 
collection and MS analysis ranged from 1 to 5 years.

Untargeted mass spectrometry methods

We conducted untargeted proteomic profiling of 
plasma samples from both rats (Discovery study) and 
humans (Transferability study) using Hyper Reaction 
Monitoring (HRM™) SpeeD Mass Spectrometry 
(Biognosys AG, Switzerland) (29). Additionally, 
untargeted metabolomic analysis was performed using 
LC-MS/MS and Polar LC platforms, supported by 
proprietary software (Metabolon, Inc., USA) (30).

Biomarker discovery in AAV-AD rats

The raw data for each feature underwent a 
normalization process. This involved adjusting with 
reference samples, applying a base-2 logarithmic 
transformation, and standardizing by subtracting the 
mean and dividing by the standard deviation, thereby 
bringing all features onto a common scale for subsequent 
analysis. Any constituent not quantified across all rats 
or exhibiting negligible variance was removed from 
the analysis to ensure only significant and informative 
features were included. 

Recursive Feature Elimination (RFE) with cross-
validation was carried out to further refine our feature 
set, employing a variety of algorithms including 
random forest, gradient tree boosting, lasso, elastic net, 
perceptron, linear kernel support vector machine, and 
logistic regression. These algorithms ranked the blood 
components based on their significance, facilitating the 
systematic removal of the least informative ones.

After reducing the number of features, sequential 
feature selection (either backward or forward) with cross-
validation was employed. During this process, the most 
informative feature was added or removed at each step, 
based on the cross-validation score of the algorithm 
under consideration. Several algorithms were used for 
this purpose, including logistic regression, linear SVM, 
Gaussian kernel SVM, random forest, a perceptron with 
two small hidden layers, and nearest neighbor classifier.

This process culminated in the identification of a 
subset of biomarkers indicative of AD. Notably, when 
a minimum of three blood biomarkers belonged to the 
same compound family, that entire family was classified 
as an AD biomarker set.

Diagnostic criteria used to label participants

To evaluate the efficacy of novel AD blood biomarkers, 
the diagnostic criteria and assessment protocols 
employed to label the participants should be consistent 
with those used for determining the diagnostic 
performance of biomarkers related to amyloid deposition 
(5-7, 31). The cognitive status of participants, categorized 
as either MCI or dementia, was defined at the time of 
blood collection based on recognized criteria. Participant 
labels (AD or Non-AD BD) were established based on the 
complete clinical follow-up: the clinical diagnosis was 
made at the advanced stages of each pathology using 
established reference standards, such as the NINCDS-
ADRDA criteria or the Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition (DSM-IV). Therefore, 
the retrospective labeling at the time of blood sampling 
considered the patient’s cognitive decline during the 
clinical follow-up based on the reference standard 
(Supplementary Fig.2). Informed consent for the use of 
biological samples and associated clinical data in research 
was obtained from all participants, as documented by 
each clinical partner. 

Patients plasma collection 
Whole blood samples were obtained via intravenous 

puncture, collected in EDTA K2-coated tubes. The 
extraction protocol varied across sampling centers, 
with specific details outlined in Supplementary 
Table 1. Following collection, the plasma supernatant 
was promptly allocated into aliquots designated for 
subsequent analyses. These aliquots were immediately 
frozen and preserved at -80°C until MS analysis was 
conducted. The interval between plasma collection and 
the initiation of MS analysis spanned from 1 to 25 years. 

Linear discriminant analysis

Linear discriminant analyses were performed using 
the ‘svd’ solver, which corresponds to a singular value 
decomposition, within the scikit-learn package. Prior to 
analysis, all datasets were normalized by subtracting the 
mean and dividing by the standard deviation, ensuring 
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standardized data for effective comparison. The results of 
the linear discriminant analysis were then visualized by 
projecting the studied classes onto two axes, utilizing the 
Seaborn Python package for graphical representation. 

Plasma constituent informativeness 
Each biomarker was independently normalized for 

each cohort by subtracting the median value of healthy 
control individuals (HC). Normalized MS values were 
then merged and further normalized through subtraction 
of the biomarker mean and division by the standard 
deviation. A random selection process was employed, 
selecting n biomarkers (where n ranged from 1 to 50) 
from the detected 128 biomarkers. The efficacy of these 
biomarkers in identifying AD patients was assessed 
through 5-fold cross-validation using logistic regression, 
limited to these n biomarkers. This procedure was 
repeated 500 times for each n value, facilitating the 
evaluation of AD detection accuracy from the prodromal 
phase with each randomly selected biomarker set. The 
same methodology was applied to the remaining blood 
constituents, enabling comparison of performance 
between the pre-identified rat biomarkers and other 
blood constituents.  All analyses were conducted using 
the scikit-learn Python package (https://scikit-learn.org/
stable/).

Targeted mass spectrometry methods
From the 128 biomarkers investigated during the 

transferability study, 103 were selected based on the 
technical feasibility of developing targeted mass 
spectrometry (MS) methods. High-throughput liquid 
chromatography-tandem mass spectrometry (LC-MS/
MS) quantification methods were developed for 50 
proteins and 53 metabolites. 

For proteomics, a robust and repeatable absolute 
quantification workflow was set up. The sample 
preparation method was developed using the Bravo 
automated l iquid handling platform (Agilent 
Technologies, Inc., USA) and the PreOmics sample 
preparation kit (PreOmics GmbH, Germany), starting 
with 2 µL of plasma. Each digested plasma sample 
was analyzed in a targeted mode (Multiple Reaction 
Monitoring, MRM) using a triple quadrupole instrument 
coupled with high-performance liquid chromatography 
(HPLC). Optimization of parameters such as collision 
energies and gradient length allowed for the selection 
of optimal proteotypic peptides and their transitions, 
leading to the quantification of 70 peptides for 45 
proteins. Limits of detection and quantification were 
determined for each protein.

For metabolomics, two different LC-MS/MS methods 
were developed using a single preparation method 
based on liquid-liquid extraction, starting with 100 µL of 
plasma. For each method, the HPLC and MS parameters 
were optimized. For each metabolite, specific Selected 
Reaction Monitoring (SRM) transitions were determined, 

and the absolute quantification was calculated based 
on calibration curves performed in solvent. Limits of 
detection and quantification were determined for each 
metabolite. Metabolites that were not detected (10), 
under the limit of quantification or not reproducible (7) 
were excluded, resulting in a final list of 36 quantified 
metabolites.

The 372 human plasma samples from 7 independent 
neurological cohorts were randomized in 9 analytical 
batches and quantified independently. To simulate 
routine clinical practice, the batches were analyzed 
sequentially with at least a week’s gap between each. The 
assays, conducted between December 2021 and May 2022, 
were blinded, with MS researchers unaware of sample 
details. Different quality controls (QCs) were performed 
to ensure good reproducibility of sample preparation 
across the batches and reliability of the LC-MS 
measurements. Proteomic data integration was performed 
using Skyline software (MacCoss Lab, University of 
Washington in Seattle, USA), with manual peak area 
review and absolute quantification via an in-house script. 
Metabolomic data treatment utilized TraceFinder software 
(Thermo Fisher Scientific, Inc., USA), with each sample 
manually reviewed and metabolites quantified against a 
calibration curve for each standard.

Machine learning procedures
Predictive machine learning (ML) models were 

developed by selecting the most relevant biomarkers 
from the 81 measured. The models were trained on 49% 
of the samples (training dataset) and internally validated 
on a separate 21% (validation dataset). During this 
phase, the positivity cutoff and various parameters were 
optimized. After finalizing and locking the ML model, its 
performance was assessed through internal validation.

In AD biomarker validation, blind external validation 
is frequently omitted, which can make the interpretation 
of the results challenging due to limited confidence in 
their generalizability and a high risk of overfitting (32). 
To avoid overfitting, the locked predictive ML model 
was then tested on an independent test dataset (external 
validation) (32, 33), to ensure the results reliability 
and reproducibility. To mitigate experimental bias, the 
samples were randomized across the three datasets based 
on 6 criteria: amyloid status (positive, negative or not 
determined), APOE genotype, analytical batch, clinical 
cohort (7 independent cohorts), gender (male or female) 
and clinical label (healthy controls, asymptomatic AD, 
non-AD BD, prodromal AD, AD dementia).

Machine learning models were trained and evaluated 
on normalized data sets by subtracting the mean and 
dividing by the standard deviation. The best algorithm 
typology (e.g., logistic regression, SVM, random forest, 
neural network) to be used was evaluated by comparing 
the performances of ranked biomarker sets defined by 
the mRMR feature selection method (34). Once the best 
algorithm typology had been defined (linear algorithms) 
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on the training set, we determined the best biomarkers set 
based on an improved method of Sequential Backward 
Floating Selection, still on this same set by cross-
validation, then by blind validation on the independent 
validation set.

Once the optimal algorithm typology and the best 
predictive biomarkers were defined, the selection of 
the best hyperparameters of the linear algorithm was 
performed both by grid search with cross-validations on 
the training set and in such a way that the performances 
were maintained in validation on the validation set. All 
the cross-validations performed were successions of 
10x 10-fold stratified cross-validations, and successions 
of 100x 10-folds cross-validations during the final 
performance evaluation phases. As the algorithm 
returns a probability, we defined the threshold above 
which an individual is predicted to develop AD 
dementia symptoms. Finally, once the set of algorithm 
hyperparameters and the biomarkers were determined, 
the algorithm was trained on merged training and 
validation sets before being evaluated in blind conditions 
on the test set. The test set was also normalized in blind 
conditions, by subtracting the mean and dividing the 
standard deviation of merged training and validation 
sets. The performance metrics used were balanced 
accuracy, sensitivity, and specificity. The specificity 
was operationalized as the proportion of patients who, 
during clinical follow-up, were diagnosed with clinical 
symptoms associated with brain disorders other than 
Alzheimer’s Disease (AD), as per established reference 
standards like the NINCDS-ADRDA criteria or the 
Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV) and exhibiting a predictive 
model score below the established positivity threshold 
of 0.76. Conversely, sensitivity was defined as the 
proportion of patients identified during clinical follow-up 
as exhibiting clinical AD dementia symptoms, according 
to the same reference standards, and who register a score 
exceeding the positivity threshold of 0.76 in the predictive 
model (35). All methods were implemented by using 
Python packages scikit-learn (https://scikit-learn.org/
stable/), mRMR (https://github.com/smazzanti/mrmr) 
and mlxtend (http://rasbt.github.io/mlxtend/).

Comparative analysis with amyloid tests

We performed a comparative analysis including 
participants with amyloid status available at baseline. 
We calculated the predictive performance (specificity, 
sensitivity, and false positive rate) based on amyloid 
status, the B-HEALED predictive model, and a 
combination of both. In the combined approach, 
participants testing positive in both the amyloid test and 
the B-HEALED model were classified as positive.

Statistical analysis
Data are expressed as the mean ± standard 

deviation (SD). Statistical, including receiver operating 

characteristic (ROC) curves, were performed using 
GraphPad Prism 9.5 software (GraphPad Software, LLC, 
USA). The statistical significance was set to a p-value < 
0.05 for all tests. One-way ANOVA followed by Holm-
Šídák’s multiple comparisons post hoc test or 2-way 
ANOVA were used to determine the significance of 
differences between groups. Student’s t-test was used 
when only 2 groups were analyzed. Pearson correlation 
test was used to determine linear correlation between 
two variables. Chi square test or McNemar’s chi-square 
test was used for comparison of two distributions. 
2-way ANOVA was used to determine the significance 
of differences between groups with one main effect 
(one source of variation). 3-way ANOVA was used to 
determine the significance of differences between groups 
for two main effects (two sources of variation).  

Results
Pre-identification of blood biomarkers in AAV-
AD rats 

We analyzed the blood profile of 104 AAV-AD and 
control rats  across various stages of AD, ranging 
from asymptomatic to advanced AD stages (25, 27, 
28). Samples were analyzed by untargeted mass 
spectrometry to measure the relative concentration of 
2,123 plasma constituents, encompassing 543 proteins, 
598 metabolites, and 982 lipids (Fig.1a). Machine learning 
(ML) approaches identified 137 biomarkers or families of 
biomarkers informative about the rats’ AD status (Fig.1b). 
Subsequent linear discriminant analysis (LDA) of these 
biomarkers revealed a clear spatial segregation between 
control and AD rats (Fig.1c). When these biomarkers 
were combined, their predictive capacity to differentiate 
AAV-AD rats from controls was significantly enhanced 
compared to other plasma constituents (p<0.0001; 
Fig.1d), yielding AUROCs ranging from 77.7% to 85.7%, 
depending on the stage of AD progression (Fig.1e).

AAV-AD rats biomarkers are informative in 
humans

To confirm the applicability of the biomarkers pre-
identified in the AAV-AD rats to humans, 125 plasma 
samples collected from cognitively normal, prodromal 
AD or demented AD participants were analyzed by 
untargeted mass spectrometry (Fig.1f, Supplementary 
Fig.3a). Among the 137 biomarkers pre-identified in 
rats, 128 were detected in human plasma and measured. 
Linear discriminant analysis (LDA) of these 128 
biomarkers demonstrated distinct spatial segregation 
among healthy controls (HC), prodromal AD, and AD 
demented participants (Fig.1g, Supplementary fig.3b-c). 
The combined diagnostic power of these biomarkers 
was significantly greater than that of other plasma 
constituents (p<0.0001; Fig.1h), yielding AUROCs of 
79.2% for prodromal AD and 88.6% for AD demented 
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patients (Fig.1i). These results confirmed the relevance 
of the identified blood biomarkers for predicting AD in 
human subjects.

a, Development steps for predictive machine learning models. The development 
was subdivided into 3 steps: Biomarker discovery in 104 AAV-AD rats, 
Transferability study on 125 human plasma samples, and Clinical validation 
study on 345 human plasma samples. b-e, Biomarker discovery step. b, Plasma 
from 47 controls and 57 AAV-AD rats was collected throughout the life of the 
animal at the asymptomatic, prodromal and demented stages. Plasma analysis 
enabled the identification of 137 biomarkers or families of biomarkers among all 
the blood constituents measured that are informative about AD status in rats. c, 
Linear discriminant analysis on all determined biomarkers confirms a different 
distribution of AAV-AD rats from control rats. d, Comparison of informativeness 
of identified biomarkers to the rest of the plasma constitution. Two-way ANOVA. 
***p<0.0001. e, ROC curves based on the predictions of 100x 10-fold cross-
validations with all biomarkers. f-i, Transferability clinical study. f, Plasma from 50 
cognitively healthy individuals and 75 AD patients was collected at the prodromal 
(n=45) and demented (n=30) stages. Of the 137 biomarkers or biomarker families, 
128 could be measured. g, Linear discriminant analysis on these 128 pre-identified 
biomarkers confirms a different distribution of AD patients from healthy controls. 
h, Comparison of informativeness of identified biomarkers to the rest of the 
plasma constitution. Two-way ANOVA. ***p<0.0001. i, ROC curves based on the 
predictions of 100x 10-fold cross-validations with all biomarkers.

Mult iplexed  MS targeted  assays  are 
reproducible

Recognizing the limitations of untargeted mass 
spectrometry (MS) assays in routine clinical practice, 
we developed targeted MS assays for 81 biomarkers 
identified during the transferability study. The 
reproducibility of these methods was evaluated 
by calculating coefficients of variation (%CV), which 
ranged from 0.03% to 38.30%, with an average of 
9.9% ± 0.8  (Supplementary Fig.4a). The validity of 
plasma concentration measurements was assessed by 
comparing the concentrations measured in the samples 
from cognitively unimpaired participants (n= 239) 
with the concentrations of 68 biomarkers referenced in 
the literature. This comparison revealed a significant 
correlation (p<0.0001; r²=0.78; Supplementary Fig.4b), 
confirming the efficacy of our multiplexed MS assays 
compared to each existing single method. Additionally, 
the assays were validated for linearity, sensitivity, 
specificity, precision, and repeatability, ensuring their 
robustness for clinical application.

Participants reflective of real-world population 

Our study analyzed a large and diverse dataset of 
389 plasma samples (each sample represents an 
individual participant) (Fig.2a). These samples were 
drawn from seven distinct retrospective neurological 
cohorts, encompassing a broad range of nationalities and 
geographic locations (Supplementary Tables 2-9).

Among all participants, 17 were excluded due 
to insufficient clinical data. The 372 remaining 
plasma samples were then randomized according to 
6 parameters, including the mass spectrometry batch 
(Supplementary Fig.5). The plasma samples were 
analyzed over 9 MS analytical batches. 27 participants 
(6.9%) were subsequently excluded from the analysis 
due to the absence of at least one MS biomarker value. 
Ultimately, 345 plasma samples were included in the 
study (Fig.2a).

To mirror real-world conditions, patients with 
various comorbidities (Fig.2b) and a spectrum of non-
AD BD pathologies (Fig.2c) were included. Among the 
participants, 82.9% had known amyloid status at blood 
sampling, with 61.9% testing amyloid positive (Fig.2d, 
Supplementary Table 2, Supplementary Fig.6). This 
distribution aimed to reflect the general population’s 
amyloid positivity rates (36), albeit with slight deviations: 
amyloid-negative cognitively impaired AD patients were 
over-represented (24.2%) compared to the 15% described 
in the literature (37), and amyloid-positive non-AD BD 
patients were under-represented (18.9%) relative to the 
29% reported in literature (5).

Figure 1. Identification and validation of blood 
biomarkers for Alzheimer’s disease
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Figure 2. Characteristics of clinical study participants

a, Distribution of samples according to the training, validation and test data sets. b, Prevalence of comorbidities in participants for whom information was available. c, 
Distribution of 19 pathologies among non-AD BD participants (left panel). MMSE (red dots) and CDR (blue dots) scores of Non-AD BD patients at the time of blood collection 
(right panel). FTD: Frontotemporal Dementia, LBD: Lewy Body Dementia, PD: Parkinson Disease. d, Percentage of amyloid positive participants in the validation study. e, 
Distribution of ethnic background among participants for whom information was available. The study is predominantly composed of Caucasian participants (93%), which 
may introduce bias in interpreting results for non-Caucasian populations. Further studies are required to validate these findings in cohorts with participants of Hispanic, 
African American, and Asian ethnicities. f, Duration from blood draw to diagnosis of AD dementia in prodromal AD participants. g, Change in MMSE scores during the 
clinical follow-up and associated annual change. h, Change in CDR scores during the clinical follow-up and associated annual change. Student’s T test. ***p<0.001.
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Figure 3. B-HEALED test predicts Alzheimer’s disease patients among cognitively impaired individuals

a, Machine learning predictive models development validated with internal and external blind validations. b, Biological pathways in which the 19 selected peripheral bio-
markers are involved. The red lines represent the links between Alzheimer’s disease and each of the biological pathways identified, while the blue lines represent the inte-
ractions between the different biological pathways. c, Performances obtained with a cut-off value of 0.76 by the ML model trained on blood concentrations of 19 biomarkers 
and 1 covariate (age at blood sampling) in terms of AUROC, specificity and sensitivity on the training, validation and training-validation datasets. Means and 95% confi-
dence intervals. *p<0.05, **p<0.01, ***p<0.001. d-f, Performances obtained with a cut-off value of 0.76 by the ML model trained on blood concentrations of 19 biomarkers 
and 1 covariate (age at sampling) in terms of AUROC, specificity and sensitivity. Means and 95% confidence intervals during the internal validation. e-i, Internal validation 
performances. d, Scores predicted by the ML model as a function of the clinical label in 100x 10-fold cross-validations on training +validation dataset (internal validation). 
One-way ANOVA, ***p<0.001. e, ROC curve of 100x 10-fold cross-validations. f, Evolution of sensitivity and specificity according to the cut-off used by the ML model to 
predict clinical status. g, Predictive model scores based on tested subject amyloid status and clinical label. 2-way ANOVA followed by Tukey’s post hoc test. ***p<0.001. h, 
ROC curves according to the amyloid status of the tested subject. i-j, Comparative analysis with amyloid status during internal validation. i, Participants included in the 
comparative analysis with amyloid. j, Performances obtained during the comparative analysis. False positive rates were calculated considering a 60% Alzheimer’s preva-
lence among cognitively impaired individuals. Chi-square test compared to Non-AD BD values as reference, *p<0.05, **p<0.01, ***p<0.001. k, Scores predicted by the ML 
model as a function of the comorbidities in AD patients. One-way ANOVA followed by Holm-Šídák’s multiple comparisons post hoc test with the non-AD BD clinical group 
as the reference. **p<0.01, ***p<0.001. 
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Supplementary tables provide a detailed description 
of each cohort (Supplementary tables 3-9). A notable 
limitation was the disproportionate representation 
of Caucasian participants (93%) compared to African 
American (4%), Hispanic (1%), and Asian (1%) origins 
(Fig.2e).

For prodromal AD participants, the average duration 
from the blood sample collection to the AD dementia 
symptoms onset was 2.5±1.9 years (Fig.2f). Amyloid-
positive prodromal AD patients converted more quickly 
to AD dementia (2.3±1.4 years) than amyloid-negative 
prodromal AD patients (3.3±3.1 years, p=0.04). On 
average, prodromal AD patients experienced a decline of 
5.3 Mini-Mental State Examination (38) (MMSE) points 
(-2.7 MMSE points/year) and an increase of 0.7 Clinical 
Dementia Rating (39) (CDR) points (+0.33 CDR points/
year) (Fig.2g-h).

B-HEALED test predicted AD with 93.0% 
specificity

After analyzing the training dataset (Supplementary 
table 10), we selected 19 blood biomarkers (13 proteins 
and 6 metabolites) and one covariate (age at blood draw) 
as the most informative panel to differentiate AD from 
non-AD BD patients (Fig.3b). These biomarkers, which 
are produced or regulated by peripheral organs, play 
roles in AD-associated biological pathways such as innate 
immune response (40) (31%), blood coagulation (41) 
(16%), lipid metabolism (42) (16%), bioenergetics (43) 
(11%), oxidative stress (44) (11%), APP/Aβ metabolism 
(45) (5%), cell protection (46) (5%), and sex hormonal 
system (47) (5%) (Fig.3b). Algorithms were then trained 
to achieve specificities above 85% and validated on the 
test dataset to identify the most effective, robust, and 
reproducible predictive algorithm (Fig.3c).

During internal validation (training + validation 
datasets), the predictive ML model was calibrated to 
a cut-off of 0.76, resulting in 93.0% specificity in 
predicting AD patients (prodromal AD (n=82) and AD 
dementia (n=83)) from non-AD BD patients (n=71), 
with 65.4% sensitivity (AUROC=81.9%, p<0.0001) 
(Fig.3c-f). The comparative analysis of patients with 
prodromal AD and those with AD dementia revealed 
a similar predictive accuracy between the two groups. 
Specifically, the sensitivity was observed to be 69.5% 
in prodromal AD patients and 61.4% in AD dementia 
patients (Fig.2c). With all parameters and hyper-
parameters locked in, we established the B-HEALED 
predictive model (incorporating the biomarkers panel, 
the hyperparameters, and trained ML algorithm). Quality 
controls confirmed the B-HEALED test’s performance 
consistency across all 7 cohorts studied (Supplementary 
Fig.7a), as well as in 19 different of brain disorders 
(Supplementary fig.7b). The test’s performance was not 
affected by covariates such as age, gender, or APOE ε4 
genotype (Supplementary fig.7c-f). The B-HEALED test 

strongly outperformed MMSE or CDR score in predicting 
AD (Supplementary fig.7g).

Our study revealed that the B-HEALED test 
successfully predicted AD during internal validation 
for both amyloid-positive (AUROC=89.2%, p<0.0001) 
and amyloid-negative (AUROC=73.6%, p<0.0001) 
participants (Fig.3g-h). These findings suggest that the 
B-HEALED test and amyloid deposit-related tests provide 
different yet complementary information. To explore the 
relationship between amyloid status and the B-HEALED 
test, we conducted a comparative analysis involving 
195 participants with available amyloid status at blood 
collection (Fig.3i). In this analysis, 62.1% of participants 
were positive for amyloid deposit-related tests (A+), 
48.7% for the B-HEALED test (B+), and 38.5% for both 
tests (A+/B+). The amyloid deposit-related tests and the 
B-HEALED predictive model did not identify the same 
participants (McNemar’s chi-square test: p=0.002). When 
we calculated the performance of amyloid deposit-related 
tests to predict AD patients from non-AD BD participants, 
we observed 81.1% specificity and 78.2% sensitivity, 
resulting in a 13.9% false positive rate considering a 60% 
AD prevalence among cognitively impaired individuals 
(Fig.3j). This calculated false positive rate is lower than 
the literature-reported rate, which can be explained by 
an underrepresentation of amyloid-positive non-AD BD 
patients (18.9% of amyloid-positive non-AD BD patients) 
in our study compared to the 29% cited in the literature 
(5). Nevertheless, these results align with performances 
described in the literature, underscoring the limitations of 
tests based solely on cerebral amyloid deposit estimates 
for identifying AD patients with high specificity (5-7). 

In contrast, the B-HEALED test predicted AD from 
non-AD BD patients with 92.5% specificity and 64.1% 
sensitivity, resulting in a 7.3% false-positive rate (Fig.3j). 
This head-to-head comparison highlights the B-HEALED 
test’s superior specificity relative to amyloid deposit-
based tests (p=0.02): B-HEALED biomarkers reduced the 
false positive rate by nearly 50% compared with tests 
based on amyloid status. When participants positive for 
both (A+/B+) were considered AD, we reached 100% 
specificity of and 52.8% sensitivity, resulting in 0% false 
positives (Fig.3j). This comparative analysis demonstrates 
the advantage of combining the two tests to minimize 
the false positive rate, as opposed to using the amyloid 
deposit-related tests alone (chi-square test: p<0.0001). 
The analysis demonstrated that, upon integration with 
amyloid status, the sensitivity and false-positive rates 
yielded comparable results for both prodromal AD and 
AD dementia patients when assessed independently. 
Notably, a slightly elevated sensitivity was observed in 
the prodromal AD group, registering at 57.9%, in contrast 
to 47.0% observed in the AD dementia group (Fig.3j).
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B-HEALED test was not impacted by 
comorbidities

To assess whether comorbidities influence the 
B-HEALED test’s predictive scores, we conducted 
analyses comparing scores between non-AD BD patients 
and AD patients with known comorbidity status. We 
examined 15 different comorbidities, including metabolic 
disorders, chronic disorders and cardiovascular 
pathologies. The results of this analysis indicated that 
these comorbidities did not significantly affect the 
B-HEALED test’s predictive scores (Fig.3k).

B-HEALED test proves robustness in blind 
external validation

In the external validation phase, the B-HEALED test 
achieved 92.0% specificity in predicting AD, including 
prodromal AD (n=41) and AD dementia (n=43), from 
non-AD BD patients (n=25), with 52.4% sensitivity 
(AUROC=71.8%, p=0.001) (Fig.4a). The comparative 
analysis of patients with prodromal AD and those with 
AD dementia revealed a similar predictive accuracy 
between the two groups. Specifically, the sensitivity was 
observed to be 48.8% in prodromal AD patients and 
55.8% in AD dementia patients (Fig.4a). These findings 
strongly argue against model overfitting and affirm the 
robustness of the B-HEALED predictive model. A head-
to-head comparison confirms that the B-HEALED test 

outperforms the specificity of tests based on cerebral 
amyloid deposits estimation (p=0.01) in the external 
validation. When participants positive for both (A+/
B+) were considered as having AD, 100% specificity 
and 39.7% sensitivity were achieved, resulting in 0% 
false positives (Fig.4b-c). This combination led to a 
significant reduction in false positive rate compared to 
the amyloid deposit-related tests used alone (16.2% false 
positive rate, considering a 60% Alzheimer’s prevalence 
among cognitively impaired individuals; chi-square 
test: p<0.0001). The analysis demonstrated that, upon 
integration with amyloid status, the sensitivity and 
false-positive rates yielded comparable results for both 
prodromal AD and AD dementia patients when assessed 
independently. Notably, a slightly elevated sensitivity 
was observed in the prodromal AD group, registering at 
44.7%, in contrast to 33.3% observed in the AD dementia 
group (Fig.4c).

Discussion

The soluble Aβ42 peptide (oligomer or protofibril 
forms) has been identified as the most toxic molecule 
responsible for AD symptoms (48). Consequently, this 
molecule certainly constitutes a valuable biomarker 
for predicting patients that will develop AD dementia 
symptoms. Unfortunately, no method currently exists for 
estimating the intracerebral Aβ42 concentration during 
a patient’s lifetime, and these soluble forms have only 

Figure 4. B-HEALED test robustly predicts Alzheimer’s disease patients among cognitively impaired individuals

a, Performances obtained during the external blind validation (test set) in terms of AUROC, specificity and sensitivity. Means and 95% confidence intervals with a cut-off 
value of 0.76. b-c, Comparative analysis with amyloid status during external validation. b, Participants included in the comparative analysis with amyloid. c, Performances 
obtained during the comparative analysis. False positive rate was calculated considering a 60% Alzheimer’s prevalence among cognitively impaired individuals. Chi-square 
test compared to amyloid tests values as reference, *p<0.05, **p<0.01, ***p<0.001. 
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been observed in human brains through post-mortem 
biochemical analyses of AD symptomatic patients’ 
cerebrums (49). As a result, the current AD diagnosis, 
as defined by the NIA-AA criteria, relies on a cognitive 
assessment (at least MCI) and the estimation of cerebral 
amyloid deposits (referred to as amyloid status) through 
amyloid PET scans or by determining Aβ42 and/or p-tau 
levels in the CSF (2, 3). However, this approach presents 
specificity challenges: 29% of MCI patients who will 
develop non-AD BD symptoms are amyloid-positive (5) 
(Fig.5a), and up to 40% are both CSF amyloid and tau 
positive (13). These patients meet the NIA-AA criteria, 
which explains the low specificity of amyloid and tau 
deposit-related tests (CSF assays or PET imaging) to 
predict which MCI patients will progress to AD dementia, 
as described in Cochrane reviews (5-7, 31). Thus, brain 
amyloid and tau lesion load biomarkers (via imaging, 
CSF, or plasma) demonstrate higher sensitivity (estimated 
at 81.5% (35)) compared to the B-HEALED predictive 
model but exhibit lower specificity (estimated at 66.5% 
(35)). Consequently, these biomarkers are associated with 

a greater false-positive rate in identifying patients at risk 
of developing AD dementia.

A substantial body of evidence indicates that 
amyloid plaques are not the underlying cause of the 
observed symptoms in non-AD BD. For patients with 
conditions such as Parkinson’s disease (18), Lewy body 
dementia (19), cortical basal syndrome (20), post-stroke 
neurodegeneration (21), schizophrenia (22), alcohol-
related cognitive disorders (23), and late-life depression 
(24), amyloid status (positive or negative) does not 
significantly influence symptom severity or cognitive 
decline rate. Therefore, amyloid-positive non-AD BD 
patients, despite being eligible for anti-amyloid therapies, 
may not experience slowed cognitive decline from these 
treatments. Prescribing anti-amyloid treatment for these 
patients seems questionable due to an unfavorable trade-
off between clinical benefits and potential side effects.

This observation highlights that amyloid-positive MCI 
patients that will develop non-AD BD symptoms (5) do 
not seem to be the primary candidates for treatment. 
There is a critical need to develop highly specific blood 

Figure 5. Diagnosing Alzheimer’s disease thanks to biomarkers produced by peripheral organs

a, The prevailing view of Alzheimer’s disease (AD) is largely grounded in the amyloid hypothesis, which posits a deterministic cascade of events triggered by an elevation 
in soluble amyloid peptides within the brain, leading to the deposition of extracellular amyloid plaques, tau intra-neuronal aggregation, neurodegeneration, and ultimately, 
cognitive impairment. However, this model falls short in accounting for the fact that up to 41% of cognitively normal individuals with amyloid deposits and 29% of non-AD 
BD patients with mild cognitive impairment (MCI) show positive results on amyloid PET imaging, while 15% of demented AD patients exhibit negative amyloid PET scans. 
b, This study provides evidence to support the possibility of predicting AD, with a lower false-positive rate observed in both amyloid-positive and negative individuals. 
This detection relies on a distinct AD plasma signature derived from peripheral organs, where an increase in the concentration of soluble amyloid at the brain and peripheral 
level triggers similar biological pathways in these two compartments in the context of AD. Notably, this peripheral signature can predict AD from the predementia stage, 
despite being unmeasurable at the brain level. c, We propose a novel amyloid theory, modulated by inter-individual susceptibility, based on equivalent performances in both 
amyloid-positive and negative subjects. Our theory involves three key stages: exposition, promotion, and progression. During the promotion stage, an increase in soluble 
Aβ42 peptide leads to tau hyper-phosphorylation, amyloid plaques, tangles, and eventually dementia. Brain or peripheral Aβ42 concentrations will reach the susceptibility 
threshold for amyloid-induced toxicity during this stage, leading to pathological pathway engagement. d, This threshold is different for each individual, which could ex-
plain why up to 15% of symptomatic AD patients are amyloid-negative (low susceptibility threshold) and up to 41% of cognitively unimpaired elderly are amyloid-positive 
(high susceptibility threshold). Peripheral metabolism deregulations would enable to predict that the threshold is reached (promotion). 
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biomarkers that enable clinicians to quickly identify 
patients for whom the risk of AD dementia symptoms 
onset is very high among the amyloid-positive 
population. This subpopulation represents the ideal target 
for anti-amyloid antibody treatments due to the favorable 
balance between clinical benefits and side effects. With 
the introduction of anti-amyloid antibodies, the need for 
highly specific blood biomarkers thus becomes crucial to 
prevent over-treatment of amyloid-positive patients that 
will develop Non-AD BD symptoms.

The B-HEALED predictive model holds promise as 
a high-specificity test, offering a potential alternative 
for the efficient and accurate identification of patients 
most likely to benefit from anti-amyloid therapies. Its 
deployment could facilitate quicker prescriptions of 
anti-amyloid antibodies by better pinpointing patients 
with a favorable clinical benefit-to-side effect ratio. The 
proposed logistical process for its deployment would 
involve patients diagnosed with MCI visiting a medical 
analysis laboratory within a partner network. Their 
blood would be drawn, and plasma extracted with two 
aliquots prepared. These samples would then be sent 
to a central laboratory equipped for mass spectrometry 
to perform the B-HEALED biomarker assays. Parallel 
amyloid blood biomarker tests would be conducted as 
companion diagnostics, with the choice of test depending 
on the treatment’s mode of action. Currently, given that 
only anti-amyloid drugs have regulatory approval, the 
envisaged companion tests are amyloid assays such as 
Aβ42, Aβ40, p-Tau 181, p-tau 217, and p-tau 231, or their 
combinations. The data would be securely transferred to a 
web server compliant with health data hosting standards, 
where the B-HEALED model would analyze the MS 
data and provide a predictive score. Patients identified 
as positive by both the amyloid test and the B-HEALED 
model would be prioritized for anti-amyloid treatments, 
ensuring a targeted and efficient approach to therapy 
allocation. 

Normal  aging is  associated with increased 
concentrations of soluble Aβ42 peptide in the blood (50) 
and brain, correlating with higher prevalence of cerebral 
amyloid pathology in individuals without dementia 
(51) and in those with non-AD BD (52). Interestingly, 
the amyloid-positive subjects proportion in individuals 
aged 70 to 79 with no cognitive impairment and those 
in age-matched non-AD BD patients is very similar 
(33% (53) and 29% (5) respectively). This similarity 
suggests a common mechanism leading to spontaneous 
amyloid positivity. This age-related amyloid deposition, 
however, does not clarify why many elderly individuals 
with positive amyloid biomarkers do not develop AD 
dementia symptoms. It is possible that these individuals 
have a greater resilience and resistance to soluble Aβ42 
accumulation, amyloid plaques, and neurofibrillary 
tangles than patients that will develop AD symptoms 
(15, 54). Given these findings, focusing solely on the 
concentration of soluble Aβ42 in biofluids or the presence 

of amyloid deposition leads to a high false positive rate in 
predicting AD symptom onset. A more effective strategy 
might involve assessing the pathological consequences 
of these molecules. Such an approach could distinguish 
between patients who will develop AD symptoms 
and spontaneously amyloid-positive individuals who 
are resilient to amyloid-induced toxicity. This refined 
diagnostic method could substantially reduce the rate of 
false positives in AD prediction (Fig.5b).

To identify highly specific AD biomarker, it 
is imperative to obtain access to blood samples from 
patients collected from the prodromal phase and 
longitudinally followed until the onset of AD or Non-AD 
BD dementia symptoms. However, the slow progression 
of AD and the subsequent scarcity of longitudinally 
collected blood samples with comprehensive clinical 
follow-up present significant challenges. This issue 
is exacerbated by the ‘curse of dimensionality’—a 
disparity between the high number of molecular 
features (blood constituents) per sample, often in the 
thousands, and the limited number of available samples, 
resulting in a sample-to-feature ratio of less than one 
(55). The complexity of obtaining a sufficiently large 
and diverse human blood sample set, encompassing a 
range of geographic origins, comorbidities, and types 
of brain disorders, further hinders the robustness 
and generalizability of potential pre-dementia blood 
biomarkers. This diversity is crucial in the discovery 
phase to ensure confidence in the biomarkers’ 
applicability across various patient populations (56). 
Consequently, there is currently no universally accepted 
set of blood biomarkers for pre-dementia patients capable 
of predicting the onset of AD dementia symptoms, 
validated through machine learning (ML) techniques.

Addressing the bottleneck in biomarker discovery 
necessitates innovative approaches. One strategy involves 
initially identifying blood markers in AD animal models, 
followed by the application of these findings to human 
sample analysis. Traditional transgenic or Aβ-induced 
animal models, which simulate genetic forms of AD, 
are not ideal for discovering blood biomarkers that can 
specifically predict the onset of sporadic AD dementia 
symptoms (57). To overcome this, we utilized a gene 
transfer-based animal model (25) designed to mimic 
sporadic AD in terms of biochemistry, cognitive 
symptoms, histology, and aging similar to humans. In 
this controlled setting, we collected plasma samples 
at key stages of AD pathology development. Using 
machine learning (ML) methods, we pre-identified 137 
informative AD blood biomarkers. Subsequently, 81 of 
these biomarkers were validated in a limited human 
blood sample set. This approach enabled the development 
of precise predictive ML models while maintaining an 
advantageous sample-to-feature ratio, thereby avoiding 
the pitfalls associated with ‘small data’ conditions 
(ensuring a sample/features ratio greater than 1). 
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The high specificity of the B-HEALED test to predict 
the development of AD dementia symptoms may be 
explained by a three-stage AD progression model, 
inspired by the model of carcinogenesis (58) (Fig.5c; 
Supplementary Fig.8; Supplementary discussion). The 
first stage, “exposition”, results from increased soluble 
Aβ42 concentration in the brain and periphery, influenced 
by factors such as age (59), genetic (60), or modifiable 
factors (61). The second stage, “promotion”, is triggered 
when Aβ42 concentration surpasses the individual’s 
unique susceptibility threshold for Aβ42 toxicity, which 
can vary from one individual to another. This variability 
could explain why some individuals develop amyloid 
plaques without displaying AD symptoms (high 
threshold) and why some AD patients develop symptoms 
even though they had not yet tested positive for amyloid 
deposits (low threshold). Finally, the “progression” 
phase involves the chain of events associated with 
AD pathology, including deregulation of metabolism, 
amyloid and tau deposition, neurodegeneration, and 
progressive cognitive AD symptoms.

In line with this mechanism, the amyloid cascade 
hypothesis is compatible with the existence of AD 
patients who are highly sensitive to soluble Aβ42 toxicity 
but do not yet exhibit amyloid deposition (amyloid-
negative AD patients) (62). In contrast, amyloid-
positive non-AD BD patients are amyloid-resilient (15) 
despite having sufficient intracerebral concentrations of 
soluble Aβ42 to result in its deposition, but insufficient 
concentrations to induce its neurotoxic effects leading to 
AD dementia symptoms. This distinction underscores 
the importance of detecting a blood biomarker signature 
indicative of the specific AD progression stage. Such 
detection could enable the prediction of patients who will 
develop AD dementia symptoms with high specificity, 
irrespective of their amyloid status at the time of 
testing. It would also aid in avoiding misdiagnosis of 
amyloid-positive non-AD BD patients by considering the 
individual’s resilience or resistance to amyloid pathology. 
Identifying these stage-specific signatures in blood could 
be a pivotal step towards more accurate and personalized 
AD diagnosis.

Here we demonstrate that peripheral multiomics 
plasma signatures,  ref lect ing the downstream 
consequences of Aβ42 oligomer-induced toxicity, can 
predict the development of AD dementia symptoms 
with a higher level of specificity than current amyloid 
tests. This represents a significant advancement in 
the development of novel blood-based diagnostic 
tools. Specifically, the B-HEALED model represents 
an innovative blood test generation that can be used 
alone or in combination with existing tests. It shows 
particular efficacy in identifying a predominantly MCI 
patient population that will progress to AD dementia 
symptoms, making it a valuable tool for clinical trial 
recruitment. Additionally, the B-HEALED test can 
assist in the selection of MCI patients for anti-amyloid 
drug prescriptions, enhancing the benefit-to-risk ratio 

by significantly reducing false positives compared to 
tests solely based on amyloid deposition. To further 
validate and integrate this model into clinical practice, 
efforts are being made to conduct larger-scale clinical 
trials involving diverse cohorts. Simultaneously, we are 
working to ensure that assay methods are compliant with 
Clinical Laboratory Improvement Amendments (CLIA), 
Food and Drug Administration (FDA), and European 
Medicines Agency (EMA) guidelines, with the aim of 
expediting the clinical application of these tests.
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